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Abstract

This project aims to create a Seq2Seq model for transforming natural language questions to
SQL queries. The purpose of the project is to optimize the classifier for a particular question
type. Many companies use local database to store all their information and it is hard for
people without SQL expertise to come to come to grips of the nature of data. It is worse
in research settings because it is common to work with multiple databases. One solution
for this is to allow users to pose their queries in natural language format. In this work I
describe a Transformer model using attention mechanism to accomplish this task. I have used
Embedding and Positional Encoding to process the data before feeding them to the model.
The data set consists of a subsample of 1000 questions and equivalent query from spyder
dataset. I have used 70 – 15 – 15 Train, Validation and Test Split. By training the model
for 750 epochs I was able to get a training accuracy of 82 %. However, validation accuracy
of the full query seemed to be a disappointing . But when considering accuracy of tables and
columns predicted correctly, I think that it is a good model and can be improved on lot by
transformer parameters, which I had to keep to a bear minimum because of performance issues
with the system used.

1 Introduction

Natural Language Querying allows a question to be posed without knowledge of the database
specific languages like SQL [1]. In principle this eases data access to non-expert users. Most
multinational companies today use relational databases to store their data and the use of a Seq2Seq
model for translating natural language to SQL has never been higher. Natural Language interface
for database is on the rise allowing users without database expertise to communicate with databases
and retrieve the data they were looking for. Recent surveys [2, 3] segmented them into 5 approaches:
keyword-based, pattern-based, syntax based, grammar based, and connectionist based.

Figure 1: Transformer - Model Architecture [8]
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Here we have used a connectionist-based technique also known as the computational intelligence-
based approach, tries to learn statistical patterns in data and/or distributed representations of it,
allowing for richer variability. These methods use either traditional Machine learning or deep learn-
ing which uses natural language processing techniques. Earlier Seq2Seq models consisted basically
an encoder and decoder RNNs with encoder summarizing all information the information we want
from the input sentence [4]. Each word from the input sentence is vectorized and every new state
is calculated using the previous and the next words. The final state of encoder feeds information
to the decoder. The decoder uses previous hidden state and output word to compute new hidden
state and word. Later people realized this model is too strict as it only allows the hidden state
from the last unit. In this model words get added one after the other in the encoder and because of
this, we lose information from beginning of the input sentence. Information can get lost during the
encoding phase. The inherent sequential nature precludes parallelization within training examples,
which becomes important as sequence length gets longer [5].

With attention we add a new input to the cells in decoder RNN called the context vector. The
context vector will provide some information about which encoder is output is more important to
a decoder depending on a weighted average. Using attention means we use not only the hidden
state and the previous output of the encoder, but also make use of all the outputs of the encoder,
which can clearly produce a better model.

The transformer (figure-1) model allows more parallelization and can reach new highs in terms
of translation quality. After Google released NL2NL model using attention converting English to
French, realizing attention added to RNN was all that was required for powerful model, attention
model has become very impactful in sequence modelling and transduction models [6,7]. In this
project I attempt to replicate the attention model for NL2SQL translation.

2 Data

The data is taken from Spider dataset, a large-scale complex and cross-domain semantic parsing
and text-to-SQL dataset annotated by 11 Yale students. The dataset contained 7000 question-
query data, 6791 after removing duplicates. I have a taken a small subset of the (1000 instances)
Spider dataset [8] after removing the duplicates.

I have created a function which gives instances where there is only 1 JOIN clause and a WHERE
condition in the query. The dataset is made up of 1000 such data. Here I have tried to optimize
the problem for 1 specific type of problem.

2.1 Split

I have split the dataset into training(75%)-validation(15%)-testing(15%).

2.2 Cleaning

For cleaning the dataset, I have removed all punctuations and replaced short notations like
“What’s” to “What is”. I have restrained from removing punctuations and T1, T2 used to denote
tables as suggested in Assignment 1 because I realized these play a important role in predicting
the output later.

2.3 Tokenizing

Tokenizing transforms each word into one corresponding number. I have used Subword Text
Encoding to do so by passing in the cleaned questions and queries. I have set the maximum
vocabulary size to 40. I have added 2 to both size of question and queries to mark beginning of
sentence and ending of sentence tokens. I have then set the inputs and outputs using these tokens.
I have set the Maximum length of Questions and Queries to 40 removing all the instances which
goes over this limit. Having high maximum limit needs high processing power. Tokenizing is done
only on the training set and after it 601 data remained.

2.4 Padding

Size of each instance is set to maximum length using padding. We use keras library to pad 0’s
at end of each sentence as it is not used by tokenizer. A vector dataset is then created using
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tensor slice.

3 Methodology

With the dataset now created and ready for training, I have set the buffer size to 20,000 and
batch size to 64. These are used for shuffling of the dataset. I have used cache and prefetch with
experimental Autotune which increases speed of training.

3.1 Positional Encoding

Order of words make an impact in CNN’s and RNN’s. Words close to each other appear in same
filter. But with attention mechanism we have a global way of finding correlation between words
and each word is given the same role. A positional encoder helps by telling us about the position
of tokens in a sequence. I have used the formula-1,2 to do this using sine and cosine functions.

PE(pos,2i) = sin(pos/10000(2i/dmodel)) (1)

PE(pos,2i+1) = cos(pos/10000(2i/dmodel)) (2)

3.2 Attention

The main idea behind Attention is to see how each element in sequence A (Questions in English) is
related to each element in B (corresponding SQL Query) (Formula-3). Then we want to rearrange
the information in A depending on how each of its element is related to B. Before attention we
have a sequence A and a Context B. After attention we will have a new sequence where element I
is a mix of elements from A that were related to Bi.

Attention(Q,K, V ) = Softmax((QKT )/
√

dk)V (3)

3.3 Scaled Dot Product

I have added an encoding and a decoding layer, each starting with an embedded layer. Embedding is
done using the TensorFlow function. Then each of the element becomes a vector and DotProduct is
used to find the relationship between two vectors. For simplicity, I have taken DotProduct between
1 and -1. If the product is close to 1, the two items are similar. 0 represents no correlation and -1
means 2 words are opposite in meaning. I achieved this using Matrix Multiplication according to
Equation 1, where Q (query), K (key), and V (value) are matrix representing sequence/sentences.
I have then scaled by dividing with dk, which is each element of each word of keys. Then I
have applied softmax to get weights on elements. Finally, I have multiplied with V to recompose
elements from our sentence. (figure-2)

3.4 Multi-headed Attention

I have linearly projected queries, keys, and values h times with different learned linear projections
to dk, dk and dv dimension. On each of these, I have then performed attention function in parallel,
getting dv-dimensional output values. Then I have concatenated this and projected again giving
the final values as in figure-3. This allows model to jointly attend to information from different
representation sub-spaces at different positions. number of Projections=8.
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Figure 2: Scaled Dot Product [8]

Figure 3: Multi Headed Attention [8]

3.5 Encoder-Decoder

Both encoder and decoder are comprised of a stack of N=6 identical layers. Each layer in the
encoder has 2 sub layers, first a multi-head self-attention mechanism and then a simple position-
wise fully connected Feed-Forward-Network. Each sublayer has a residual connection with dropout
rate set to 0.01 [9] followed by normalization. In [8] the dmodel is set to 512 but here due to system
performance I had to go with 128. Each Sublayer Output = LayerNorm(x + Sublayer(x)), where
Sublayer(x) is function implemented by sublayer itself. In addition to sublayers in encoder, decoder
adds a 3rd sublayer that performs multihead attention on output encoder stack.

3.6 Feed Forward Layers

After attention layers, each of the layers in our encoder-decoder contains 2 fully connected FFNs
(formula-4). This contains 2 linear transformations with Relu activation in between [8]. Dimen-
sionality of input and output is dmodel=128 and inner layer has dimensionality dff=512.

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

3.7 Self Attention

At beginning of each of Encoding or Decoding Layers we recompose sequence to identify relation-
ship of each element others, by using global information of the sequence. Q=K=V.
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3.8 Look Ahead Mask

While training we feed whole output, whereas prediction word, we should not see words after it.
So, we multiply with matrix represented in figure-4.

Figure 4: Matrix Multiplication for Look Ahead Mask [8]

Hyper Parame-
ter

Used Original from [8]

Model Dimension 128 512
Number of Layers 6 6
FFN Units 512 2048
Number of Projec-
tions

8 8

Dropout Rate 0.01 0.1
Warmup Steps 4000 4000

Table 1: Hyper Parameters

4 Results

During training we are to put some probability for each word in our vocabulary to be the next word
appearing in our output sequence. We achieve this by using Sparce Categorical Cross entropy. I
have masked the padding tokens when computing loss so that only real words get predictions and
not the 0s we added at the end to reach max length. I have used the mean of losses during training
to get the training loss. I have used Sparce Categorical Accuracy to get the training Accuracy. I
use a custom scheduler for learning rates using warmup steps =4000 as in [8] using formula 5. I
have used an Adam Optimizer with the initial learning rate=0.01 and setting the beta 1 and beta2
parameters to 0.9 and 0.98 respectively. Epsilon is set to a large negative number. I have trained
the model for 1500 epochs and found the training accuracy to reach its threshold at 0.8265, with
a training loss of 0.0035. The model is saved at the end of each epoch, however I only keep the
last 5 checkpoints, so if there are more than 5, the older ones get deleted.

Irate = d
(−0.5)
(model) ·min(step num(−0.5), step num · warmup steps(−1.5)) (5)

Validation Set Training Set
Correct Predictions (%) Correct Predictions / Total
Predictions (150)

25.33 24.66

Has 1 Where and only 1 Join 150 150
Table Predictions (Correct Predictions / Total num-
ber of tables (300)

42 45

Mean Cosine Similarity 0.676 0.69
Mean Score for finding correct columns (Mean of
Correctly Predicted Columns / Total Number of
Columns in original query)

0.38 0.387

Table 2: Results from Validation and Test Sets

6



During the validation and the test phase we need to first clean the sentence removing punctu-
ations and short forms just like we did for the training set. We also need to encode the question
sentence using tokeizer and add starting and ending tokens. I used the evaluator to predict the
query for questions in the validation dataset and found that the translator was able to predict
the query 25.33% of the time by comparing predicted query to the original. Even though this is
not a high score I found the model to be good when considering other facts. The first test was
to check if all the queries generated has 1 Where condition and only 1 Join Clause, since the
model was trained to that specific type of data and all 150 predicted queries seem to follow this. I
then created a function to check the accuracy of the model in correctly predicting the table names,
comparing it to the original query. Since there are only 2 tables involved, the function returns 2
if both tables are correctly predicted, 1 if one of the tables is correctly predicted and 0 if none of
the tables are correctly predicted. It was found that the model was able to predict tables correctly
42% of the times. I have then used Cosine Similarity (formula-6) to show the similarity between
the original query and the predicted one. The mean of which was a striking 0.676. I then tried to
get the score of predicting columns correctly by dividing the number of columns predicted correctly
by total number of columns in the original query, the mean of which was found to be 0.38.

Cos(Θ) =
A ·B

|| A || · || B ||
(6)

I have then used the model to predict the query for the testing dataset. The translator was able to
predict the exact query 24.66% of the times. It was again found that all the 150 predicted queries
have a Where condition and only 1 Join clause. It was found the model was able to predict the
correct tables 45% of the times. The model had a mean cosine similarity score of 0.69 on the
testing set. The mean score for finding the correct column was found to be 0.387. I then used the
cosine similarity score to categorize predicted queries according to their effectiveness to Very Poor
for scores between (0-0.2). Poor for scores between (0.2-0.4), Good for scores between (0.4-0.6),
Very Good for between (0.4-0.8), and Excellent for scores between (0.8-1). It was found that there
was no query in the Very Bad Category and only 1 query in the Poor Category. I then plot the
Effectiveness Vs Similarity as represented by figure-5

Figure 5: Similarity Vs Effectiveness Plot

Figure 6: Output Screen
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Question Original Query Predicted Query Correctly
Pre-
dicted
Ta-
bles

Columns
Score

Cosine
Simi-
larity

Effectiveness

WHAT ARE THE
LAST NAMES OF
THE TEACHERS
WHO TEACH
THE STUDENT
CALLED GELL
TAMI

SELECT
T2.LASTNAME
FROM LIST AS
T1 JOIN TEACH-
ERS AS T2 ON
T1.CLASSROOM
=
T2.CLASSROOM
WHERE
T1.FIRSTNAME
= ”GELL” AND
T1.LASTNAME =
”TAMI”

SELECT
T2.LASTNAME
FROM LIST AS
T1 JOIN TEACH-
ERS AS T2 ON
T1.CLASSROOM
=
T2.CLASSROOM
WHERE
T1.FIRSTNAME
= ”GELL” AND
T1.LASTNAME =
”TAMI”

2 1 1 Excellent

FIND THE AVER-
AGE PRICE OF
WINES THAT
ARE NOT
PRODUCED
FROM SONOMA
COUNTY

SELECT
AVG(PRICE)
FROM WINE
WHERE AP-
PELATION NOT
IN (SELECT
T1.APPELATION
FROM AP-
PELLATIONS
AS T1 JOIN
WINE AS T2 ON
T1.APPELATION
=
T2.APPELATION
WHERE
T1.COUNTY
= ’SONOMA’)

SELECT
AVG(T2.PRICE)
FROM AP-
PELLATIONS
AS T1 JOIN
WINE AS T2 ON
T1.APPELATION
=
T2.APPELATION
WHERE
T1.COUNTY
= ”SONOMA”

2 0.77 0.75 Very Good

SHOW THE TO-
TAL NUMBER OF
ROOMS OF ALL
APARTMENTS
WITH FACILITY
CODE GYM

SELECT
SUM(T2.ROOM COUNT)
FROM APART-
MENT FACILITIES
AS T1 JOIN
APARTMENTS
AS T2 ON
T1.APT ID
= T2.APT ID
WHERE
T1.FACILITY CODE
= ”GYM”

SELECT
T1.BUILDING ADDRESS
FROM APART-
MENT BUILDINGS
AS T1 JOIN
APARTMENTS
AS T2 ON
T1.BUILDING ID
=
T2.BUILDING ID
WHERE
T2.BATHROOM COUNT
2

1 0.529 0 Good

Table 3: Practice used for results

5 Discussion

Even though the results in validation and testing gave low scores compared to the training accu-
racy, The Cosine Similarity seems to show that the model is good and has great potential to be
improved. There is almost no predicted query with similarity score lower than 0.4. Because this
is a translation problem, we cannot say the model is bad just depending on the accuracy score.
Queries with same meaning can be achieved using different wordings. Due to the vastness of the
dataset used predicting the table names alone is huge and the model seems to get it right over
40% of the times. Another important thing to note is that all the predicted queries are semanti-
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cally correct and follow the SQL syntax. I also think that the model can be improved if using the
model dimension and FFN units used in [8] which I had to restrain from because performance issues.

An accuracy of over 60% was attained by [10] over the entire spyder dataset in only 90 epochs.
Both [10] and [11] describes queries with multiple tables as complex, and even though it took a
larger number of epochs I was able to get a training accuracy of 82%. [11] discusses various bench-
marks and provides performance evaluation of various NL2SQL translators. Our test accuracy of
25% seem a relevant number of methods available like NaLIR and Templar.

The performance of the model can also be improved using a larger dataset for training. We
could use beam search strategy for decoding the test dataset instead of greedy approach (argmax).
One of the drawbacks of the attention model is that it is time consuming. This is the case especially
when the data are long sequences and since I chose to us complex query with two tables I had
to cut down the size of training date removing all sequences where length was greater than 40 in
either question or query.

6 Conclusions

In this work I have presented a transformer model with attention and use a sub sample of the Syder
dataset involving complex queries with a Where condition and only 1 Join Clause. This is built
on top of the basic encoder decoder model (figure-7), by adding in a new global variable called
the context vector which provides weighted information about each state of the encoder during
decoder. The decoder now not only has access to the previous state and the hidden state but also
all the states of the encoder (figure-8). This help in predicting the output sequence better.

Figure 7: Basic Encoder-Decoder Decoder
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Figure 8: Attention Model

During the training phase I was not able to use the same hyper parameters used in [8] due to
performance issues and because the attention model is time consuming. I was still able to get a
high accuracy score of 82%. Even though the accuracy on the validation and test dataset was only
25%, I believe this to be a good model considering other factors such as accuracy of predicting the
correct tables and correctly predicted columns over total number of original columns. When using
Cosine Similarity score comparing the original and the predicted queries, it was seen that most of
the queries had a score over 0.4. All the predicted queries followed the SQL syntax and had no
syntactical error. Even though the accuracy in predicting the exact query is not very good a closer
look at the other factors involved suggests that the model is good.

I feel that there is certainly room for a lot of improvement by increasing the size of dataset.
While vectorizing I had to decide up on a maximum length for the questions and queries to follow
and since these complex queries had large sentence length, it was not in my advantage as I had to
decide on a smaller max length for training to be less time consuming. I believe using a system
with higher processing power could help with this. I also believe not having to compromise on the
hyper parameters could have helped improve the model.

For future work I would certainly like to add to the complexity of the queries. I would also
suggest working with 2 or more different types of queries with a larger dataset and see how the
attention model performs to it. Contrastingly I believe lowering the complexity of the query would
improve the testing accuracy score. I also think that using tables from only 1 database would
prove to have a higher accuracy score while testing.
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