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We were not consistently getting a high score when playing the Hanabi bot. By introducing 

some new rules and taking cross over of some features from SHC, population-based GA and 

MCTS, I have improved the bot to score 15 almost consistently. The bot logs the data when it 

plays and uses it to improve itself further. So far, we have an 97.04 % of score being higher 

than 13 in a lifetime of 5000 games. 

Introduction: 

I have used here elements of 3 different algorithms to consistently get a score around 15 in 

the game of Hanabi. The 3 algorithms being Stochastic Hill Climber, Population based GA 

and Monte Carlo Tree Search. I have also introduced 5 more rule which I think had made the 

score higher. I have also logged the total number of games; total times score was higher than 

13 and percentage of times score was higher than 13 in the bot’s lifetime.  

I have introduced a new bot chromosome_logger to log values initially when there is no data 

about the chromosome or fitness available. We use this to play the game and log the best and 

worst chromosomes. Then we play chromosome_evaluator to get optimum score while still 

recording the best and the worst chromosomes. Thus, the score gets increase as we play.  

Literature Review - Hanabi Game: 

Hanabi is a Team Game. You must work towards a common goal of placing cards to the 

centre of the table, so they appear in sets of matching colours (1 white, 1red, 1 blue, 1 yellow, 

1 green) each with ascending numeric values, (1, 2, 3, 4, 5). The coloured card sequence 

represents fireworks being launched. In Hanabi game concept Red -1-2-3-4-5 is read firework 

being launched. 

Each player is dealt with 5 cards. Each player cannot see their own cards but can see all of 

their team-mates' cards, since all cards in a player's hand are displayed facing away from the 

owning player.  You can't see the values or colours of the cards in your hand.  Your team-

mates can see them properly. Players take turns to play cards into the centre, in the hope that 

the card they play will be valid (e.g.  a red 2 is only valid to be played if it can go on top of a 

red 1 already on the table). So, players are playing moves blindly, i.e., without seeing what 

cards they are playing!    The team has 3 lives (indicated by 3 red tokens in the game).  Hence 

if 3 invalid cards are played in total, by the whole team, then the game ends for all players 

immediately. 

But the players take turns to communicate, specific details of the cards their teammates are 

holding. You are only allowed to give very limited amount of information. There are 8 



information tokens overall at the beginning of the game. Giving information, costs these 

tokens. Information token can be gained by discarding cards in hand. Whenever a player 

discards a card, it is replaced with one from the deck.  

When the deck is empty or when all the lives are lost or when all fireworks are correctly 

launched up, the game ends. Score is calculated by adding the number of cards correctly 

played at the centre. The maximum score you can get is 25. 

The deck consists of 50 cards. 3 cards of value 1, 2 cars of value 2, 3, and 4and 1 card of 

value 5, for each of the colours, colours white, red, blue, yellow and green. 2 types of 

information can be given using the information tokens – The colour or The Value. 

Information must be complete and should point to the correct cards i.e., if the player has 2 

green cards the informer cannot point to just 1 card and give the information. You cannot give 

negative information i.e.; you can only give information what a card is and not what is not. 

 

Experimental Study: 

I have added some rules of my own to make the Hanabi bot score higher. 

Rule 7 – Play a card with both rank and colour and is playable. This is a safe move and can 

be played anytime. 

Rule 8 – Play a card when there is a hint about the Rank and the firework requires a card of 

that rank. This is kind of a gamble, but we go through with this rule only when the life tokens 

are still at maximum and when we run out of information tokens. So, it is still a safe rule. 

Rule 9 – Discard an unplayable card. This is done when the information token is 0 and you 

know that the card is totally unplayable. I have improved the function 

filter_card_list_by_unplayable. So, if all the 4’s of a colour is discarded, then there is no 

point in keeping a 5 of that colour, because it can never be played. Similarly, for other ranks. 

So here we go through the 5 different colours for each card in the discard pile. We have a 

counter array for each colour. The array has 4 elements if we find a card of rank 0 of a 

particular colour in the discard pile the count [0] element gets incremented and if we find a 

card of rank = 1 of a certain colour in the discard pile count [1] gets incremented and so on. 

Then in the end we check if count [0] == 3. This means that all the rank 0 cards of a 

particular colour are in the discard pile so there is no point in keeping any higher rank cards 

as they are unplayable. If count [1], count [2], count [3] == 2 then there is no pint in keeping 

cards of rank 2,3,4 or 3,4 or 4 respectively. So, these cards are appended to the 

unplayable_cards. Then the count array is re-initialized for the next colour. Also, if the rank 

of card of a particular colour is lower than card of that colour in the firework, it goes to the 

unplayable_cards list. 

In this rule we go through the list of unplayable cards and if the hint of colour and rank both 

point to a card in the list, we discard it. This is pretty much a safe move by itself, and we 

don’t need to check if the information_tokens is 0 or do it as a last resort. 

Rule 10 – Discard a card of unplayable colour. To do this I have added a new function 

filter_unplayable_color. In this function we create a full Hanabi deck and set result to it. 

Then we a have a dictionary playable_colors. The keys are the 5 colours and initially all the 



values are False. Then we go through all the cards in discard pile and remove them from 

result. Then we go through all the cards in the firework and remove cards from result that 

are already in the firework. Now we go through the remaining cards and if the rank of the 

card is greater than or equal to card needed for the firework, we set the value of that colour in 

playable_colors to True. Finally, we go through the keys in playable_colors and if any of 

the color still has value False we add that colour to the list unplayable_colors. 

Now if there is any card in hand with a hint of colour equal to a colour from the list 

unplayable_colors, we can discard it. This is again a safe move by itself, and we don’t need 

to check if the information_tokens is 0 or do it as a last resort. 

Rule 11 – Give a player without any clues a clue about a playable card. Here we go through 

each player and increment a counter variable called hints if there is a hint about colour or 

rank. Then we check if hints for any of the player is 0 if any player has 0 hints, we randomly 

give a hint about either colour or rank of a playable card in his hand. 

 

I have tried to implement stochastic hill climber and MCTS to select the chromosome for 

improved score. We start with a chromosome = [1, 11, 2, 7, 5, 8, 6] which is one of the 

chromosomes that gives highest score 16.08. I have created a new python file 

chromosome_logger.py and 3 new txt files to log the outputs. logger.txt, 

best_chromosome.logger.txt and worst_chromosme_logger.txt 

logger.txt – Here the following are logged in the same order  

• best Chromosome – the best chromosome 

• up – an array upper limits of range within which a particular path (delete, insert, chose 

a new chromosome, take splices of 2 chromosome and add them together or swap the 

position of elements within a chromosomes) will be chosen. 

• ignored – an array of number of times a path has been ignored. 

• Best Fitness – This is the best score got so far. Not just in this iteration, in the 

lifetime. 

• Total Game – Total games played in the lifetime. 

• Times scored greater than 13 – Total times score was greater than 13 in the lifetime. 

• Percentage of games score was higher than 13 – Total percentage of games where 

score was higher than 13. 

best_chromosome_logger.txt – Here we log the chromosomes used when score was higher 

than 13 

worst_chromosome_logger.txt – Here we log the chromosomes used when score was lower 

than 10 

How the code works  

We use chromosome_logger.py to log values into the 3 text files. This file must be run at-

least once before running the chromosome_evaluator.py.  

• So first we declare a variable best_fitness = 0 and best_chromosme = None.  



• We open logger.txt in read mode. In the 1st run this is an empty file. However, we 

read from this file and save to variable logger. 

• Chromomse – This has been set to [1, 11, 2, 7, 5, 8, 6], one of the best chromosomes 

gotten so far. 

• up – this is the upper limit of various paths path (delete, insert, chose a new 

chromosome, take splices of 2 chromosome and add them together or swap the 

position of elements within a chromosomes) that can be chosen and is set to [10, 20, 

30, 40, 50] in the initial run. 

• ignored - this is the times a path has been ignored. It has been set to [0,0,0,0,0] for the 

initial run. 

• total_game = 0, times_scored_higher_than_13 = 0, 

percentage_score_higher_than_13 = 0 – these are 0 for the initial run. 

• chromosmomes_with_score_higher_than_13 = [], 

chromosomes_with_score_lower_than_10 = []- these are empty lists for the initial 

run. 

• Now we check if logger is an empty string and if it is not then we have values for the 

above variables. For the first run logger is empty and we move on without executing 

anything in the if block. 

• We clear everything in the logger.txt and close the file. This is not important in the 

first run as there is nothing to delete. 

• Now we open best_chromosome_logger.txt and read from it to a variable 

logged_best_chromosme. Then we check if logged_best_chromosome is empty 

string and in the first run it is. So, we don not execute anything in the if block. We 

close best_chromosme_logger.txt. 

• We open worst_chromosome_logger.txt and read from it to a variable 

logged_worst_chromosme. Then we check if logged_worst_chromosome is empty 

string and in the first run it is. So, we don not execute anything in the if block. We 

close worst_chromosme_logger.txt. 

• We print all the values from the logger.txt. This is just for reference. 

• We have 1 more variable path which is set to 0 

• Now we start the iteration. From range of 1 to at-least 500 to collect data. 

• total_games is incremented by 1 at the beginning of each iteration. Then we check if 

best_chromosm is None and if it is not None we set chromosome to 

bext_chromome.copy(). But for the 1st run best_chromosme is none. 

• generate_random_number (lower_lmt, upper_lmt) - this is a function which 

generates a random integer between 2 limits. 

• We call this function with values (1, up [4]) to generate a random number between (1, 

50) in the first run. up [4] is 50 for the first run. The random number is saved in a 

variable random_number 

•  We chose a path depending upon the random_number. If the random_number is 

between 1 and up [0] (10 in first run) we chose to delete an element from the 

chromosome. 

If it is between up [0] + 1 and up [1] (11 to 20 in the first run) we chose to insert an 

element to the chromosome.  



If it is between up [1] +1 and up [2] (21 to 30 in the first run) we chose, to clear the 

chromosome and chose a new chromosome. 

If it is between up [2] + 1 and up [3] (31 to 40 in the first run) we chose  

to create a new chromosome and splice it with the older chromosome. 

If it is between up [3] + 1 and up [4] (41 to 50 in the first run) we chose to swap the 

position of 2 elements in the chromosome. 

• Delete – We use the generate_random_number (0, len(chromosme)-1) to set a 

random position. The element in that position of the chromosome is popped out. We 

set the path variable to 1. 

• Insert – We use generate_random_number (0, len(chromosme)-1) to select a 

position and select a chromosome to be inserted at that position. 

Here the chromosome we want to insert must be between 0 and 11 because that is the 

range of rules (0-11), and it must be a value not already in the chromosome list. We 

need to insert new element only after checking that the chromosome list is not already 

the full set of rules from 0-11. We set the path variable to 2.  

• New Chromosome – Here we clear the chromosome. The we select a length for the 

length of new chromosome to be created. I have found that length between 4-8 to be 

ideal. Then we randomly append the chromosome in the range (0,11). As we do this, 

we need to make sure that we exclude the values already in the chromosome from 

being selected again. We set path to 3. 

 
Fig 1 

• Splice – Here we do the same step we used to create a new chromosome. Here 

however we need to check that the value we are entering is not in new_chromosome 

as well as chromosome. Also, we need to make sure that the range does not run out 

of values this could happen as the length of new_chromosome is still set to 4-8. So, 

as we append values to new_chromosome excluding the values already in 

new_chromosome and chromosome we could make a full list of values from 0-11. 

In this case we may run out of values to append to new_chromosome. 

So, what we do is append values to new_chromosome as normal. Then we subtract 

chromosome from new_chromosome and add the values that remain to a new 

variable chrom. Then we append chromosome with values in chrom. We set path to 

4. 

• Swap – We generate 2 random positions and swap the elements of those positions 

with ach other. We set path to 5. 

• If 5 or 6 are not in the chromosome list, we append them. 

• Now we call the run method pass the chromosome and get the result. 

• If result is greater than 13, we increment times_scored_higher_than_13 by 1 and 

add the chromosome to the list chromosmomes_with_score_higher_than_13 

• If result is less than 10, we add the chromosome to the list 

chromosmomes_with_score_lower_than_10 

• If result is greater than best_fitness, we set best_fitness to result and 

best_chromosome to chromosome.  

• Increasing Probability of the rewarding path: 

•  Currently we have Delete working from 1-10, Insert from 11-20 and so on. When 

we find that delete gets a score greater than 13, we try to increase the range where 



delete so that it has more probability of being selected. So, we go through range of 

numbers 1-5. When the path is equal to the number, we increment the up [number 

- 1] by 2. This is because path is from 1-5 and up being an array has index 0 to 4. We 

also need to check that 2 elements of up does not collide or overlap. So, we do the 

increment only under these conditions i.e., up [ number - 1] + 2 < up[number]. The 

last element of up however does not have this limitation. 

• Decreasing probability of punishing paths: 

• Quiet opposite to increasing probability of rewarding path, we try to narrow down the 

range of paths that give result less than 10. If the path gives score lower than 10 then 

we decrement the upper limit of that path by 2. Here again we need to make sure that 

the limits don’t collide or overlap. So, we only do the decrement when up[number-

1]-2 > up[number]. We don’t need to implement this limitation on up [0] as there is 

nothing it would collide with. 

• Increasing probability of ignored paths: 

• First, we go through all the paths and increment the ignored array elements for all the 

paths except the path that was chosen. Path=1 corresponds to ignored [0], path 2 to 

ignored [1] and so on. 

• The we go through the elements of ignored and if any element has been ignored for 10 

times in a row, we increase the upper limit of that path by 1. Now up [0] corresponds 

to ignored [0] corresponds to path 1. up [ 1] corresponds to ignored [1] 

corresponds to path 2 etc. Here again we need to make sure that the upper limits 

don’t collide. So, we do the increment only when up [number] < up [number+1] + 

1. Here too the last element of up doesn’t have this limitation. 

• Now we start logging the values. 

• We open logger.txt in r+ mode. First, we iterate through the elements of the 

best_chromosome and write them to the file each element separated by ‘,’. When we 

reach the end of the list, we add a ‘|’ instead of a ‘,’. 

• Then we go through elements of up and ignored and do the same. 

• By now we would have written something like this to the logger.txt file 1, 11, 7, 2, 5, 

8, 6| 690, 749, 752, 758, 776| 1375, 6613, 7060, 7035, 6637| 

• Then we also log best_fitness, total_games, times_scored_higher_13, 

(times_scored_higher_13/total_games) * 100, all separated by ‘|’. 
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• We close the logger.txt file. 

• We open best_chromosome_logger.txt file in r+ mode. 

• We go through the list of lists chromosmomes_with_score_higher_than_13 and add 

each chromosome to the file. Each element of the chromosome is separated by ‘,’ 

and each chromosome is separated by ‘|’ 

•  We close the file best_chromosome_logger.txt. 

• Now we open file worst_chromosome_logger.txt file in r+ mode do the same using 

the list of lists chromosmomes_with_score_lower_than_10 

• When we are not doing the 1st run: 

• Now logger.txt has some values and logger variable is not going o be an empty string. 

So, we first split the string by ‘|’ and save it in logged_values. We can further split 



the logged_values [0], logged_values [1] and logged_values [2] by ‘,’. These are 

chromose, up and ignored. 

• O we clear the 3 lists, chromosme, up, and ignored and then append these lists from 

values from logged_values [0], logged_values [1] and logged_values [2] 

• We set best_chromosme to chromosome.copy() 

• We set best_fitness to logged_values [3], total_games to logged_values [4], 

total_scored_higher_13 to logged_values [5] and percent_scored_higher_than_13 

to logged_values [6] 

• Then we clear the file and close it as before. 

• We open best_chromosome_logger.txt and append the chromosomes as a list to the 

list chromosmomes_with_score_higher_than_13. We close 

best_chromosome_logger.txt. 

• We open worst_chromosome_logger.txt and append the chromosomes as a list to the 

list chromosmomes_with_score_lower_than_10. We close 

worst_chromosome_logger.txt. 

•  Now during iteration if the number of chromosomes in the list 

chromosmomes_with_score_higher_than_13 is greater than 100. We have a check 

if the current chromosome is a subset of one of the chromosomes in 

chromosmomes_with_score_higher_than_13. If not, we replace it with something 

in the list chromosmomes_with_score_higher_than_13. 

• We also check if the chromosome is equal to one of the chromosomes in the list 

chromosmomes_with_score_lower_than_10 and if so, we again replace it with one 

of the chromosomes in chromosmomes_with_score_higher_than_13.  

• In the chromosome_logger.py this step is done before the path is chosen. So, we 

have more probability of finding new chromosomes. 

In chromosme_evaluator.py we try to use the logged values from chromosme_logger 

and try to find a chromosome with high score. However, we log the values that we get 

here too. I think this would help improve the model. 

• Difference between chromosme_evaluator and chromosome_logger: 

• When we have path = 3 or when we need to choose a new chromosome. We 

do jot randomly select a new one. Instead, we can select a chromosome from the list 

chromosmomes_with_score_higher_than_13. 

• When we have path = 4 or when we need to splice 2 chromosomes together. 

We do not splice the original chromosome with a new chromosome of randomly 

selected elements. Instead, we select 2 chromosomes from the list 

chromosmomes_with_score_higher_than_13 and splice them together. I have set 

the maximum length of chromosome to be 8. So, I pop out elements from the final 

chromosome from random positions to assert length to be less than or equal to 8. 

• Once we have gone through one of the 5 paths. If the chromosome is not a 

subset of one of the chromosomes in chromosmomes_with_score_higher_than_13 

or is in the list chromosmomes_with_score_lower_than_10. We replace it with one 

of the chromosomes in chromosmomes_with_score_higher_than_13. Here this step 

is done in the end because we are more focussed on getting a good score than logging 

values. 

 



Performance in Chromosome Tester – For this I had to change the name of the class 

RuleAgentChromosome to MyAgent and I have set the chromosome to [1, 11, 7, 2, 5, 8, 6]. 

The Score got was 15.7/25 

 

 

Fig 3 

Scatter Plot Showing Learning Rate – I have added a new text file fitness.txt. This file is 

written by fitness which is a list of scores on each iteration. We use the data from this file to 

plot graph of score against the number of games played. The number of games in which the 

score is higher than 13 has increased over time as we trained the bot by playing more games.

 

Fig 4 – 1st 200 run (Chromosome_logger) 



 

Fig 5 – 1st 1000 run (200-1000 Chromosome_evaluator) 

 

Fig 6 – 1st 5000 run (200-5000 Chromosome_evaluator) 

Techniques Implemented: 

• Stochastic Hill-climbers: Stochastic Hill Climber is often called the Random 

Mutation Hill Climber because it randomly selects a way to mutate the chromosome. 

Delete, Insert or Swap. 

Initialization – Randomly initialize a value within the search space. We are not doing 

this step now because have already found a chromosome which give the best fitness 

so far. But initially random chromosomes are created within search space. 

Mutation – We have 5 different paths to choose 3 of which are mutations of the 

chromosome. Insert, delete and swap. 



Evaluation – We evaluate the fitness by comparing best score to current score. 

Replacement – We replace the chromosome with the chromosome that gives best 

score and replace current best score with score if score is greater than best score. 

• Population Based GA – We have implemented a crossover of SHC with population-

based GA by adding 2 new paths to mutate towards. Selecting a chromosome from 

best chromosomes and splicing up 2 best chromosomes together. 

Elitism – We find chromosomes which give score greater than 13 and add them to a 

list these are elite. 

Splice – We take chunks from 2 elite chromosomes to create a new better 

chromosome. 

• Monte Carlo Tree Search –  

Tree Selection - The tree is expanded in regions where ucb1 algorithm looks more 

promising. The selection process keeps selecting the most promising node in main 

tree. We have implemented this by increasing the probability of selecting a path that 

was promising earlier. 

Back propagation – We are updating the best fitness each time we get a score greater 

than the current best score. We are updating the best chromosome as the chromosome 

corresponding to the best score.  

Expansion – We are selecting the best chromosome and exploring new values by 

undergoing one of the 5 mutation paths available. 

Once a path is ignored for too long the probability of choosing that path is increased. 

• We have also implemented new rules to try improved the score. We have improved 

the list of unplayable cards and added a new strategy to discard unplayable coloured 

cards. We have also implemented a rule to give clue about a playable card to a player 

who doesn’t have any clues. 

 

Analysis: 

Mutation and Replacement is a good feature of SHC which helps in find new possible 

chromosomes which might give a better score. We also replace the best score with score if the 

current score is higher than best score.  

Elitism and Splicing are 2 good features of Population based GA, which allows to retain 

chromosomes which has previously given good scores and create a new chromosome by 

taking elements of 2 elite chromosomes. 

Selection and Expansion are 2 good features of MCTS. It is good to explore more in a node 

which has previously given good results. We do this by increasing the probability of a node 

being chosen. We also reduce the probability of a node being chosen when it has previously 

given bad scores. We increase the probability when a node has been ignored for too long. 

 I have also added some rules which made the bot better. 

We can discard an unplayable card when information token is 0. Instead of just checking into 

cards in the firework. I have also improved the method by making a higher rank card 

unplayable when cards of a lower rank of the same colour are all in the discard pile. 



We can discard cards when it is of an unplayable colour, and we have hint about colour of the 

card. I have added a method to know what unplayable colours are. 

We can give clues to a player who has a playable card and is out of clues. 

We can obviously play a card which has both rank and colour and is playable. 

We can play a card when we have the rank and one of the colours in the firework needs that 

rank. 

Overall Conclusions and Future Scope: 

Taking some elements of SHC, Population based GA and MCTS has helped improve the 

score of the Hanabi bot. Also, adding some obvious rules has helped in improving the score. 

Logging the values and using the data to influence new generation of chromosomes has 

helped in consistently getting a score around 15 in the Hanabi game. 

I think playing the game more improves the score as we are logging the best chromosomes. 

The bot can be improved by addition of more rules like providing hints about an unplayable 

card. We can also include splicing of 3 or even more best chromosomes if there are enough 

rules. 
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