
Bot for Hanabi Game
AJAYKIRAN PALAMTHODI, ap21903@essex.ac.uk

MSc, Advanced Computer Science

University of Essex, UK

ap21903@essex.ac.uk

We were not consistently getting a high score when playing the Hanabi bot. By introducing

some new rules and taking cross over of some features from SHC, population-based GA and

MCTS, I have improved the bot to score 15 almost consistently. The bot logs the data when it

plays and uses it to improve itself further. So far, we have an 97.04 % of score being higher

than 13 in a lifetime of 5000 games.

Introduction:

I have used here elements of 3 different algorithms to consistently get a score around 15 in

the game of Hanabi. The 3 algorithms being Stochastic Hill Climber, Population based GA

and Monte Carlo Tree Search. I have also introduced 5 more rule which I think had made the

score higher. I have also logged the total number of games; total times score was higher than

13 and percentage of times score was higher than 13 in the bot’s lifetime.

I have introduced a new bot chromosome_logger to log values initially when there is no data

about the chromosome or fitness available. We use this to play the game and log the best and

worst chromosomes. Then we play chromosome_evaluator to get optimum score while still

recording the best and the worst chromosomes. Thus, the score gets increase as we play.

Literature Review - Hanabi Game:

Hanabi is a Team Game. You must work towards a common goal of placing cards to the

centre of the table, so they appear in sets of matching colours (1 white, 1red, 1 blue, 1 yellow,

1 green) each with ascending numeric values, (1, 2, 3, 4, 5). The coloured card sequence

represents fireworks being launched. In Hanabi game concept Red -1-2-3-4-5 is read firework

being launched.

Each player is dealt with 5 cards. Each player cannot see their own cards but can see all of

their team-mates' cards, since all cards in a player's hand are displayed facing away from the

owning player. You can't see the values or colours of the cards in your hand. Your team-

mates can see them properly. Players take turns to play cards into the centre, in the hope that

the card they play will be valid (e.g. a red 2 is only valid to be played if it can go on top of a

red 1 already on the table). So, players are playing moves blindly, i.e., without seeing what

cards they are playing! The team has 3 lives (indicated by 3 red tokens in the game). Hence

if 3 invalid cards are played in total, by the whole team, then the game ends for all players

immediately.

But the players take turns to communicate, specific details of the cards their teammates are

holding. You are only allowed to give very limited amount of information. There are 8

information tokens overall at the beginning of the game. Giving information, costs these

tokens. Information token can be gained by discarding cards in hand. Whenever a player

discards a card, it is replaced with one from the deck.

When the deck is empty or when all the lives are lost or when all fireworks are correctly

launched up, the game ends. Score is calculated by adding the number of cards correctly

played at the centre. The maximum score you can get is 25.

The deck consists of 50 cards. 3 cards of value 1, 2 cars of value 2, 3, and 4and 1 card of

value 5, for each of the colours, colours white, red, blue, yellow and green. 2 types of

information can be given using the information tokens – The colour or The Value.

Information must be complete and should point to the correct cards i.e., if the player has 2

green cards the informer cannot point to just 1 card and give the information. You cannot give

negative information i.e.; you can only give information what a card is and not what is not.

Experimental Study:

I have added some rules of my own to make the Hanabi bot score higher.

Rule 7 – Play a card with both rank and colour and is playable. This is a safe move and can

be played anytime.

Rule 8 – Play a card when there is a hint about the Rank and the firework requires a card of

that rank. This is kind of a gamble, but we go through with this rule only when the life tokens

are still at maximum and when we run out of information tokens. So, it is still a safe rule.

Rule 9 – Discard an unplayable card. This is done when the information token is 0 and you

know that the card is totally unplayable. I have improved the function

filter_card_list_by_unplayable. So, if all the 4’s of a colour is discarded, then there is no

point in keeping a 5 of that colour, because it can never be played. Similarly, for other ranks.

So here we go through the 5 different colours for each card in the discard pile. We have a

counter array for each colour. The array has 4 elements if we find a card of rank 0 of a

particular colour in the discard pile the count [0] element gets incremented and if we find a

card of rank = 1 of a certain colour in the discard pile count [1] gets incremented and so on.

Then in the end we check if count [0] == 3. This means that all the rank 0 cards of a

particular colour are in the discard pile so there is no point in keeping any higher rank cards

as they are unplayable. If count [1], count [2], count [3] == 2 then there is no pint in keeping

cards of rank 2,3,4 or 3,4 or 4 respectively. So, these cards are appended to the

unplayable_cards. Then the count array is re-initialized for the next colour. Also, if the rank

of card of a particular colour is lower than card of that colour in the firework, it goes to the

unplayable_cards list.

In this rule we go through the list of unplayable cards and if the hint of colour and rank both

point to a card in the list, we discard it. This is pretty much a safe move by itself, and we

don’t need to check if the information_tokens is 0 or do it as a last resort.

Rule 10 – Discard a card of unplayable colour. To do this I have added a new function

filter_unplayable_color. In this function we create a full Hanabi deck and set result to it.

Then we a have a dictionary playable_colors. The keys are the 5 colours and initially all the

values are False. Then we go through all the cards in discard pile and remove them from

result. Then we go through all the cards in the firework and remove cards from result that

are already in the firework. Now we go through the remaining cards and if the rank of the

card is greater than or equal to card needed for the firework, we set the value of that colour in

playable_colors to True. Finally, we go through the keys in playable_colors and if any of

the color still has value False we add that colour to the list unplayable_colors.

Now if there is any card in hand with a hint of colour equal to a colour from the list

unplayable_colors, we can discard it. This is again a safe move by itself, and we don’t need

to check if the information_tokens is 0 or do it as a last resort.

Rule 11 – Give a player without any clues a clue about a playable card. Here we go through

each player and increment a counter variable called hints if there is a hint about colour or

rank. Then we check if hints for any of the player is 0 if any player has 0 hints, we randomly

give a hint about either colour or rank of a playable card in his hand.

I have tried to implement stochastic hill climber and MCTS to select the chromosome for

improved score. We start with a chromosome = [1, 11, 2, 7, 5, 8, 6] which is one of the

chromosomes that gives highest score 16.08. I have created a new python file

chromosome_logger.py and 3 new txt files to log the outputs. logger.txt,

best_chromosome.logger.txt and worst_chromosme_logger.txt

logger.txt – Here the following are logged in the same order

• best Chromosome – the best chromosome

• up – an array upper limits of range within which a particular path (delete, insert, chose

a new chromosome, take splices of 2 chromosome and add them together or swap the

position of elements within a chromosomes) will be chosen.

• ignored – an array of number of times a path has been ignored.

• Best Fitness – This is the best score got so far. Not just in this iteration, in the

lifetime.

• Total Game – Total games played in the lifetime.

• Times scored greater than 13 – Total times score was greater than 13 in the lifetime.

• Percentage of games score was higher than 13 – Total percentage of games where

score was higher than 13.

best_chromosome_logger.txt – Here we log the chromosomes used when score was higher

than 13

worst_chromosome_logger.txt – Here we log the chromosomes used when score was lower

than 10

How the code works

We use chromosome_logger.py to log values into the 3 text files. This file must be run at-

least once before running the chromosome_evaluator.py.

• So first we declare a variable best_fitness = 0 and best_chromosme = None.

• We open logger.txt in read mode. In the 1st run this is an empty file. However, we

read from this file and save to variable logger.

• Chromomse – This has been set to [1, 11, 2, 7, 5, 8, 6], one of the best chromosomes

gotten so far.

• up – this is the upper limit of various paths path (delete, insert, chose a new

chromosome, take splices of 2 chromosome and add them together or swap the

position of elements within a chromosomes) that can be chosen and is set to [10, 20,

30, 40, 50] in the initial run.

• ignored - this is the times a path has been ignored. It has been set to [0,0,0,0,0] for the

initial run.

• total_game = 0, times_scored_higher_than_13 = 0,

percentage_score_higher_than_13 = 0 – these are 0 for the initial run.

• chromosmomes_with_score_higher_than_13 = [],

chromosomes_with_score_lower_than_10 = []- these are empty lists for the initial

run.

• Now we check if logger is an empty string and if it is not then we have values for the

above variables. For the first run logger is empty and we move on without executing

anything in the if block.

• We clear everything in the logger.txt and close the file. This is not important in the

first run as there is nothing to delete.

• Now we open best_chromosome_logger.txt and read from it to a variable

logged_best_chromosme. Then we check if logged_best_chromosome is empty

string and in the first run it is. So, we don not execute anything in the if block. We

close best_chromosme_logger.txt.

• We open worst_chromosome_logger.txt and read from it to a variable

logged_worst_chromosme. Then we check if logged_worst_chromosome is empty

string and in the first run it is. So, we don not execute anything in the if block. We

close worst_chromosme_logger.txt.

• We print all the values from the logger.txt. This is just for reference.

• We have 1 more variable path which is set to 0

• Now we start the iteration. From range of 1 to at-least 500 to collect data.

• total_games is incremented by 1 at the beginning of each iteration. Then we check if

best_chromosm is None and if it is not None we set chromosome to

bext_chromome.copy(). But for the 1st run best_chromosme is none.

• generate_random_number (lower_lmt, upper_lmt) - this is a function which

generates a random integer between 2 limits.

• We call this function with values (1, up [4]) to generate a random number between (1,

50) in the first run. up [4] is 50 for the first run. The random number is saved in a

variable random_number

• We chose a path depending upon the random_number. If the random_number is

between 1 and up [0] (10 in first run) we chose to delete an element from the

chromosome.

If it is between up [0] + 1 and up [1] (11 to 20 in the first run) we chose to insert an

element to the chromosome.

If it is between up [1] +1 and up [2] (21 to 30 in the first run) we chose, to clear the

chromosome and chose a new chromosome.

If it is between up [2] + 1 and up [3] (31 to 40 in the first run) we chose

to create a new chromosome and splice it with the older chromosome.

If it is between up [3] + 1 and up [4] (41 to 50 in the first run) we chose to swap the

position of 2 elements in the chromosome.

• Delete – We use the generate_random_number (0, len(chromosme)-1) to set a

random position. The element in that position of the chromosome is popped out. We

set the path variable to 1.

• Insert – We use generate_random_number (0, len(chromosme)-1) to select a

position and select a chromosome to be inserted at that position.

Here the chromosome we want to insert must be between 0 and 11 because that is the

range of rules (0-11), and it must be a value not already in the chromosome list. We

need to insert new element only after checking that the chromosome list is not already

the full set of rules from 0-11. We set the path variable to 2.

• New Chromosome – Here we clear the chromosome. The we select a length for the

length of new chromosome to be created. I have found that length between 4-8 to be

ideal. Then we randomly append the chromosome in the range (0,11). As we do this,

we need to make sure that we exclude the values already in the chromosome from

being selected again. We set path to 3.

Fig 1

• Splice – Here we do the same step we used to create a new chromosome. Here

however we need to check that the value we are entering is not in new_chromosome

as well as chromosome. Also, we need to make sure that the range does not run out

of values this could happen as the length of new_chromosome is still set to 4-8. So,

as we append values to new_chromosome excluding the values already in

new_chromosome and chromosome we could make a full list of values from 0-11.

In this case we may run out of values to append to new_chromosome.

So, what we do is append values to new_chromosome as normal. Then we subtract

chromosome from new_chromosome and add the values that remain to a new

variable chrom. Then we append chromosome with values in chrom. We set path to

4.

• Swap – We generate 2 random positions and swap the elements of those positions

with ach other. We set path to 5.

• If 5 or 6 are not in the chromosome list, we append them.

• Now we call the run method pass the chromosome and get the result.

• If result is greater than 13, we increment times_scored_higher_than_13 by 1 and

add the chromosome to the list chromosmomes_with_score_higher_than_13

• If result is less than 10, we add the chromosome to the list

chromosmomes_with_score_lower_than_10

• If result is greater than best_fitness, we set best_fitness to result and

best_chromosome to chromosome.

• Increasing Probability of the rewarding path:

• Currently we have Delete working from 1-10, Insert from 11-20 and so on. When

we find that delete gets a score greater than 13, we try to increase the range where

delete so that it has more probability of being selected. So, we go through range of

numbers 1-5. When the path is equal to the number, we increment the up [number

- 1] by 2. This is because path is from 1-5 and up being an array has index 0 to 4. We

also need to check that 2 elements of up does not collide or overlap. So, we do the

increment only under these conditions i.e., up [number - 1] + 2 < up[number]. The

last element of up however does not have this limitation.

• Decreasing probability of punishing paths:

• Quiet opposite to increasing probability of rewarding path, we try to narrow down the

range of paths that give result less than 10. If the path gives score lower than 10 then

we decrement the upper limit of that path by 2. Here again we need to make sure that

the limits don’t collide or overlap. So, we only do the decrement when up[number-

1]-2 > up[number]. We don’t need to implement this limitation on up [0] as there is

nothing it would collide with.

• Increasing probability of ignored paths:

• First, we go through all the paths and increment the ignored array elements for all the

paths except the path that was chosen. Path=1 corresponds to ignored [0], path 2 to

ignored [1] and so on.

• The we go through the elements of ignored and if any element has been ignored for 10

times in a row, we increase the upper limit of that path by 1. Now up [0] corresponds

to ignored [0] corresponds to path 1. up [1] corresponds to ignored [1]

corresponds to path 2 etc. Here again we need to make sure that the upper limits

don’t collide. So, we do the increment only when up [number] < up [number+1] +

1. Here too the last element of up doesn’t have this limitation.

• Now we start logging the values.

• We open logger.txt in r+ mode. First, we iterate through the elements of the

best_chromosome and write them to the file each element separated by ‘,’. When we

reach the end of the list, we add a ‘|’ instead of a ‘,’.

• Then we go through elements of up and ignored and do the same.

• By now we would have written something like this to the logger.txt file 1, 11, 7, 2, 5,

8, 6| 690, 749, 752, 758, 776| 1375, 6613, 7060, 7035, 6637|

• Then we also log best_fitness, total_games, times_scored_higher_13,

(times_scored_higher_13/total_games) * 100, all separated by ‘|’.

Fig 2

• We close the logger.txt file.

• We open best_chromosome_logger.txt file in r+ mode.

• We go through the list of lists chromosmomes_with_score_higher_than_13 and add

each chromosome to the file. Each element of the chromosome is separated by ‘,’

and each chromosome is separated by ‘|’

• We close the file best_chromosome_logger.txt.

• Now we open file worst_chromosome_logger.txt file in r+ mode do the same using

the list of lists chromosmomes_with_score_lower_than_10

• When we are not doing the 1st run:

• Now logger.txt has some values and logger variable is not going o be an empty string.

So, we first split the string by ‘|’ and save it in logged_values. We can further split

the logged_values [0], logged_values [1] and logged_values [2] by ‘,’. These are

chromose, up and ignored.

• O we clear the 3 lists, chromosme, up, and ignored and then append these lists from

values from logged_values [0], logged_values [1] and logged_values [2]

• We set best_chromosme to chromosome.copy()

• We set best_fitness to logged_values [3], total_games to logged_values [4],

total_scored_higher_13 to logged_values [5] and percent_scored_higher_than_13

to logged_values [6]

• Then we clear the file and close it as before.

• We open best_chromosome_logger.txt and append the chromosomes as a list to the

list chromosmomes_with_score_higher_than_13. We close

best_chromosome_logger.txt.

• We open worst_chromosome_logger.txt and append the chromosomes as a list to the

list chromosmomes_with_score_lower_than_10. We close

worst_chromosome_logger.txt.

• Now during iteration if the number of chromosomes in the list

chromosmomes_with_score_higher_than_13 is greater than 100. We have a check

if the current chromosome is a subset of one of the chromosomes in

chromosmomes_with_score_higher_than_13. If not, we replace it with something

in the list chromosmomes_with_score_higher_than_13.

• We also check if the chromosome is equal to one of the chromosomes in the list

chromosmomes_with_score_lower_than_10 and if so, we again replace it with one

of the chromosomes in chromosmomes_with_score_higher_than_13.

• In the chromosome_logger.py this step is done before the path is chosen. So, we

have more probability of finding new chromosomes.

In chromosme_evaluator.py we try to use the logged values from chromosme_logger

and try to find a chromosome with high score. However, we log the values that we get

here too. I think this would help improve the model.

• Difference between chromosme_evaluator and chromosome_logger:

• When we have path = 3 or when we need to choose a new chromosome. We

do jot randomly select a new one. Instead, we can select a chromosome from the list

chromosmomes_with_score_higher_than_13.

• When we have path = 4 or when we need to splice 2 chromosomes together.

We do not splice the original chromosome with a new chromosome of randomly

selected elements. Instead, we select 2 chromosomes from the list

chromosmomes_with_score_higher_than_13 and splice them together. I have set

the maximum length of chromosome to be 8. So, I pop out elements from the final

chromosome from random positions to assert length to be less than or equal to 8.

• Once we have gone through one of the 5 paths. If the chromosome is not a

subset of one of the chromosomes in chromosmomes_with_score_higher_than_13

or is in the list chromosmomes_with_score_lower_than_10. We replace it with one

of the chromosomes in chromosmomes_with_score_higher_than_13. Here this step

is done in the end because we are more focussed on getting a good score than logging

values.

Performance in Chromosome Tester – For this I had to change the name of the class

RuleAgentChromosome to MyAgent and I have set the chromosome to [1, 11, 7, 2, 5, 8, 6].

The Score got was 15.7/25

Fig 3

Scatter Plot Showing Learning Rate – I have added a new text file fitness.txt. This file is

written by fitness which is a list of scores on each iteration. We use the data from this file to

plot graph of score against the number of games played. The number of games in which the

score is higher than 13 has increased over time as we trained the bot by playing more games.

Fig 4 – 1st 200 run (Chromosome_logger)

Fig 5 – 1st 1000 run (200-1000 Chromosome_evaluator)

Fig 6 – 1st 5000 run (200-5000 Chromosome_evaluator)

Techniques Implemented:

• Stochastic Hill-climbers: Stochastic Hill Climber is often called the Random

Mutation Hill Climber because it randomly selects a way to mutate the chromosome.

Delete, Insert or Swap.

Initialization – Randomly initialize a value within the search space. We are not doing

this step now because have already found a chromosome which give the best fitness

so far. But initially random chromosomes are created within search space.

Mutation – We have 5 different paths to choose 3 of which are mutations of the

chromosome. Insert, delete and swap.

Evaluation – We evaluate the fitness by comparing best score to current score.

Replacement – We replace the chromosome with the chromosome that gives best

score and replace current best score with score if score is greater than best score.

• Population Based GA – We have implemented a crossover of SHC with population-

based GA by adding 2 new paths to mutate towards. Selecting a chromosome from

best chromosomes and splicing up 2 best chromosomes together.

Elitism – We find chromosomes which give score greater than 13 and add them to a

list these are elite.

Splice – We take chunks from 2 elite chromosomes to create a new better

chromosome.

• Monte Carlo Tree Search –

Tree Selection - The tree is expanded in regions where ucb1 algorithm looks more

promising. The selection process keeps selecting the most promising node in main

tree. We have implemented this by increasing the probability of selecting a path that

was promising earlier.

Back propagation – We are updating the best fitness each time we get a score greater

than the current best score. We are updating the best chromosome as the chromosome

corresponding to the best score.

Expansion – We are selecting the best chromosome and exploring new values by

undergoing one of the 5 mutation paths available.

Once a path is ignored for too long the probability of choosing that path is increased.

• We have also implemented new rules to try improved the score. We have improved

the list of unplayable cards and added a new strategy to discard unplayable coloured

cards. We have also implemented a rule to give clue about a playable card to a player

who doesn’t have any clues.

Analysis:

Mutation and Replacement is a good feature of SHC which helps in find new possible

chromosomes which might give a better score. We also replace the best score with score if the

current score is higher than best score.

Elitism and Splicing are 2 good features of Population based GA, which allows to retain

chromosomes which has previously given good scores and create a new chromosome by

taking elements of 2 elite chromosomes.

Selection and Expansion are 2 good features of MCTS. It is good to explore more in a node

which has previously given good results. We do this by increasing the probability of a node

being chosen. We also reduce the probability of a node being chosen when it has previously

given bad scores. We increase the probability when a node has been ignored for too long.

 I have also added some rules which made the bot better.

We can discard an unplayable card when information token is 0. Instead of just checking into

cards in the firework. I have also improved the method by making a higher rank card

unplayable when cards of a lower rank of the same colour are all in the discard pile.

We can discard cards when it is of an unplayable colour, and we have hint about colour of the

card. I have added a method to know what unplayable colours are.

We can give clues to a player who has a playable card and is out of clues.

We can obviously play a card which has both rank and colour and is playable.

We can play a card when we have the rank and one of the colours in the firework needs that

rank.

Overall Conclusions and Future Scope:

Taking some elements of SHC, Population based GA and MCTS has helped improve the

score of the Hanabi bot. Also, adding some obvious rules has helped in improving the score.

Logging the values and using the data to influence new generation of chromosomes has

helped in consistently getting a score around 15 in the Hanabi game.

I think playing the game more improves the score as we are logging the best chromosomes.

The bot can be improved by addition of more rules like providing hints about an unplayable

card. We can also include splicing of 3 or even more best chromosomes if there are enough

rules.

References:

https://moodle.essex.ac.uk/pluginfile.php/1393836/mod_resource/content/4/02b_genetic_algo

rithms.pdf

https://moodle.essex.ac.uk/pluginfile.php/1407583/mod_resource/content/9/05_game_theory

_and_tree_search.pdf

https://moodle.essex.ac.uk/mod/book/view.php?id=86957

