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When the Neural Bot plays with beginners the results were good, but when it played against 

intermediates the results weren’t very good. I have tried to improve the Neural Bot and make it beat 

all the intermediate bots. I have run the competition 10000 times and gotten promising results. In 

order to improve the Neural Bot, I have added in some feature inputs. (failed_mission_leadered, 

missions_passed_as_spy, missions_success, won_as_ress, won_as_spy) 

 

The accuracy of the LoggerBot classifier in finding if the Logicalton Bot was a spy was 77% and I 

have risen it to 98.7%. I have also reduced the loss from 0.43 to around 0.029. The neural bot also 

works well in finding if other bots like, Bounder, Simpleton or Trickerton are spies. 

Introduction: 

We have used neural network to play the resistance game. We have used a LoggerBot to log some 

data on how the spies would behave versus how a resistance player behaves. This is used as training 

data for supervised learning. We have trained a neural network classifier to identify resistance 

members from spies. We have created a NeuralBot that uses the classifier to decide who to trust in 

the game as a spy or a non-spy. 

When the neural bot played against beginners the result was good. However, when it was put 

against intermediates, the result wasn’t very good. The motivation is to improve the NeuralBot and 

make it beat the intermediates. 

     

fig 1: NeuralBot against Beginners   fig 2: NeuralBot against Intermediates 

The Resistance: 

Resistance is a board and cards game. The 1st team to get 3 points win. We play as 2 Teams, Red-

Spies, Blue-Resistance. Each player is given a character card, which determines if you are a spy or a 

resistance. Each player is also given an approve/ reject card. One player is given leader token. The 

leader tells everyone to close eyes. Then tells the spies to open eyes and look at each other, then 
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close. Then tells everyone to open eyes and the game begins. The Mission leader should choose 

team to go on mission and everyone else get to vote on if the team should go on mission o should 

they select a different team. Leader gives each player he wants to go mission a gun token. If 

majority rejects the team, the leader token is passed on to next player clockwise. The number on 

board tells how many members are needed for a mission. If you can’t agree on a team 5 times in a 

row spies win. If majority approves each member of team is given a success and a fail card. If in the 

resistance, players must turn in success card face down. The spies can turn in either success or fail 

card. Two separate players must shuffle the cards and then the leader reveals them. If there is at-

least 1 fail the mission is sabotaged and a spy token is placed on the Mission circle. The goal of 

spies is to sabotage mission. The resistance must try to find the spies and not let them in on 

missions. If mission is a success a resistance token is placed on the Mission circle. When one of 

teams score 3 points the game ends and that team wins. 

Background: 

We try to use neural network to play the resistance game. W have used a LoggerBot to collect date 

from playing with other bots. Then we pass these data to a neural network classifier and use the 

NeuralBot to identify who the spies are in the game. 

In supervised learning we try to approximate a function using some labelled date and their attribute 

features. To evaluate the algorithm’s effectiveness, it is tested on previously unseen examples. 

Supervised learning consists of a list of input vectors {x1, x2, x3, …}  and a list of output vectors 

{y1, y2, …} each pair of (xi, yi) is called a training pattern. An artificial neural network is based on 

the idea that the basic working of a human brain can be imitated using silicon and wires by making 

correct connections. 

The Neuron/Node  

    

Fig 3: Neuron    Fig 4: Neural Network with 1 ip layer, 1 op layer and weights 

A node is the basic building block of ANN. It has an Axons and Dentrites. The dentrites are the 

receiver of the signal and axon is the transmitter, just like the input and output signals in ANN. A 

network always contains input and output layers. There may also be hidden layers between them. 

Nodes in one layer are connected to nodes in the next layer with weights. Node takes the weighted 

sum of all the input signals it is getting and then it applies an activation function. Some of the 

common activation functions used are sigmoid, Threshold, Rectifier, tanh etc. I have used the tanh 

function to train the loggerbot classifier. 

 



Fig 5: Hyperbolic Tangent Function (tanh) 

A bias constant is added to the weighted sum before sending it to the activation function so: 

(x1*w1+ x2*w2…xi*wi + bias) is sent to an activation function. Bias is a constant value added to 

the weighted sum of input signals to shift the result of the activation function to the positive of 

negative side. 

How Neural Networks Learn?  

We first need to train the NN, that is choose weights and biases that are useful. We want the NN to 

choose weights and biases so that the actual result and the output of the activation function are 

equal f(xp) ≈ yp. To obtain this we define a Loss Function that we seek to minimise. L = −log(pt) is 

the cross-entropy loss function. Thus, minimising L must maximise pt (probability of true 

category). In keras, we can specify Cross-Entropy Loss in the model.compile line with: 

loss=keras.losses.SparseCategoricalCrossentropy(). A Softmax function is used in the final layer to 

make sure the outputs are all positive and adds up to 1 like probabilities should. 

Fig 6: Softmax Function 

When the training set size is very large, just computing L over the whole set will take a lot of time. 

So, we train in mini batches. 1 epoch is one full pass through the data set which might consist of 

many iterations. 1 iteration is 1 application of weighted update equation, calculated for mini batch. 

An optimizer is used to adjust the weights and biases to speed up/slow down the result as required. 

Here we use The Adam optimizer. It dynamically and intelligently adjusts learning rates to handle 

tight corners and platues. 

 

Techniques Implemented: 

The agent submitted works on NN to guess weather a player is a spy or not in a resistance game. I 

have built on the Neural bot and tried to improve the winning rates as resistance, spy and overall 

while playing against intermediate bots. I have used several decision trees along with the output of 

the NN to improve the bots winning chances. 

• The bot takes in 22 input vectors out of which 4 (turn, tries, playername and playerid) are 

eliminated.  

• The other input vectors include failed_missions_been_on, missions_been_on,  

6 numbers for num_missions_voted_up_with_total_suspect_count, and another 6 numbers 

for num_missions_voted_down_with_total_suspect_count, won_as_res, won_as_spy, 

mission_success, mission_passed_as_spy.  

• We use a loggerbot to log thes values by pitting it against the intermediate bots.  

• We have 2 outputs, either a spy or not a spy. we choose 70% of data for training and 30% or 

validation. 

• We define a sequential model with 3 layers. We use 10 nodes and tanh function in the 1st 2 

layers. We use softmax for the final/ output layer  

• We use keras.optimizers.Adam with a learning rate of 0.001 

• Since this is a classification problem we use keras.losses.SparseCategoricalCrossentropy 

to find the accuracy of the model and use it on a validation set. 

• batch size = 50 and epochs =120 

• We save the model in bots/loggerbot_classifier 

• We get models against each of the intermediate bots stack them up together and send it to 

output layer with softmax function and we get probabilities of each bots being a spy or not. 



• I have implemented several decision trees and nested decision trees along with the NN to 

increase the winning rate of the bot.  

• With this I have made the bot always win against Simpleton, Trickerton and Bounder of the 

intermediate bots. 

• It still loses to Logicalton of the intermediates, but the winning rate are very close and 

sometimes it even beats Logicalton. 

Experimental Study: 

Playing the Neuralbot against the intermediates, the accuracy at guessing if each bot was a spy or 

not initially was: Logicalton-78 %, Bounder-77 %, Trickerton-70 %, Simpleton-74 % 

   

Fig 7: Training vs Validation Accuracy at the begining 

The input features that were used earlier was (failed_missions_been_on, missions_been_on, then 6 

numbers for num_missions_voted_up_with_total_suspect_count, and another 6 numbers for 

num_missions_voted_down_with_total_suspect_count). 

failed_missions_leadered – This shows the number of missions that were sabotaged while the 

player was leader. A spy is more prone to select a team that would sabotage the mission. He would 

select the other spy counting on him to sabotage the mission or sabotage the mission himself. So, I 

thought this would help improve the accuracy of the classifier. I define this in the 

onGameRevealed(…) method of the loggerbot and increment it for each player when he is the 

leader of a team that fails a mission. After adding this variable and running competition for 10000 

times with intermediats and the loggerbot the accuracy score for each bot was- Logicalton-80 %, 

Bounder- 78%, Trickerton-70%, Simpleton-74%. This was not that promising, so I did not retain 

this input variable.  

mission_passed – This tells us how many missions the player has been on that were successful. I 

have added this variable in the onGameRevealed (…) method of the loggerbot and increment it for 

each passed missions when number of sabotages were not greater than 0 in the 

onMissionCompleated(…) method. After adding this variable and running competition for 10000 

times with intermediats and the loggerbot the accuracy score for each bot was- Logicalton-88 %, 

Bounder- 88%, Trickerton-79%, Simpleton-84%. This was good result, but I thought I could make 

it better. I retained this input vector. 

   

Fig 8: Training vs Validation Accuracy after adding mission_passed 



missions_passed_as_spy – This variable tells us about if a spy passed the mission being in the 

team. Spies usually don’t sabotage the 1st mission as not be suspected so; this tells us about how 

cautious the bot is. Sometime this could backfire as the bot would just be sabotaging randomly and 

the variable would tell us nothing about the bot. But I thought we should give it the benefit of the 

doubt. I have added this variable in onGameRevealed(…). This variable did not have much impact 

on the accuracy. The accuracy scores after adding this variable was: Logicalton - 89 %, Bounder – 

88 %, Trickerton – 87%, Simpleton – 84%. This variable showed improvement in accuracy only on 

the Trickerton bot, but I decided to keep it as it showed potential of working good on future bots 

that may play as spy well. 

 

Fig 9: Training vs Validation Accuracy of Trickerton after adding missions_passed_as_spy 

won_as_spy, won_as_res – These are 2 input signals that I have added. If the player won as a spy. 

Won_as_spy=1 else 0. If the player wins the game as resistance won_as_res=1 else 0. I have added 

these in the onGameRevealed(…) method and update it in onGameComplete(…). In this method 

If win==True that means resistance won, else spies won. But to include these input vectors I had to 

move the line where we append all the input features to a list to onGameComplete(…) because 

these values are going to be always 0 if we append the input features into the list 

onVoteComplete(…). The accuracy score after adding these 2 input signals for each of the bots 

were: Logicalton – 98%, Bounder - 99%, Tricerton - 98%, simpleton – 98%. These were really 

good accuracy scores, and it makes sense because these values tell us about how much the bot is 

prone to win when they play as resistance or spy. It tells us if the different bots have any advantage 

when they are playing a specific class. I have retained these input vectors 

   

Fig 10 - Training vs Validation Accuracy Final 

After this I decided to feed this to the neuralbot and see how it performs against the intermediate 

bots after the accuracy score in detrmining if a bot is spy or not has been increased considerably. 

I was surely getting better results with an overall win % of 46.6, win as spy = 75.9% and win as 

resistance = 27.3%. The Neural bot was beating 2 of the intermediate bots Simpleton and 

Trickerton. 



 

Fig 11 – Running Competition after getting good accuracy score on all intermediate bots 

I was not satisfied with these results as the Neural Bot got trashed by the other 2 intermediate bots. 

Bounder and Logicalton. So I decided to dig into what made logicalton so good and maybe 

implement some of those features in my bot. I quickly realized that the NN only helps in guess if 

the other bots are spy and it is not fullproof. It doesn’t help the bot when it plays as a spy in any 

way as we already know the spies.  

onGameRevealed (…) – We were just using this method from the logger bot, but we don’t get 

access to spies that way. So I decided to over ride it. I also added some fields of my own as this is 

the 1st method that is called and so a good place to declare fields. self.spies=spies , self.failedTeam 

= [] ( a list of failed teams), self.otherSpy ( to know the other spy if you are a spy), self.downvotes 

= 0 (number of times you have voted down a team), self.teams = [] , self.obviousSpies = [].  

vote (…) – All that neural bot did here was vote up all the teams as spy and vote down teams with 2 

highest probable spies as resistance and vote up everything else. There was room for lots of 

improvement here. 

• If we are spy - Always vote down 5th try and try to win the game.  

• We increment the self.downvotes if we have voted down and decrement it when we have 

voted up in onVoteCompleted (…).  

• We don’t want to give away that we are spy so if self.downvotes >=3 and if we are one of 

the 2 players who has the highest failed missions ( failed_missions_been_on from 

loggerbot) we vote the team up.  

• Else we vote up teams with spies > 0 

• If we are the team leader - we vote the team up.  

• If we are in resistance - we vote the team up if tries are 5.  

• If the length of team is 3 and we are not in it - we vote the team down. 

• We discard teams or subset of teams that has been on failed missions before. 

• Then we use the NN to check the trustworthiness if we haven’t returned already.  

• If a member of the team is one of the 2 highest in both sorted_players_by_trustworthiness 

and failed_missions_been_on – vote the team down as resistance. 

• If a team member is in the list self.obviousSpies - vote the team down as resistance 

 

onVoteComplete (…)  

• If you have voted down a team increment self.downvotes by 1 else decrement it by 1 

• If self.game.tries =5 and someone has voted down a team. Add them to obvious spies list. 

Only spies vote down last attempt to form team. 

 



sabotage (…) – Here the neuralbot always returned True  

• Always Sabotage the mission if win=2 as spy 

• Always Sabotage the mission if losses=2 as spy 

• As spy if the other spy is in team and it is not one of the 2 players having highest failed 

missions, don’t sabotage the mission. Count on the other spy to sabotage it. 

• As spy If you are not one of the 2 players having highest failed missions sabotage the 

mission 

• If in resistance don’t sabotage the mission. 

 

 onMissionComplete (…) 

• If num_sabotages>0 – mission failed. Add the team to self.failedTeam 

self.failed_missions_been_on for the team members get incremented from loggerbot. 

• Make self.downvotes=0 as we start on voting teams again 

• If num_sabotages<=0 mission passed add the team to self.teams 

getOptimalTeam (…) 

Here we try to make an optimal team with members of previously passed missions. This list can be 

empty 

• Suspicios_players – players who has highest failed missions at any point 

• We go through all teams in self.teams. if we are part of any team remove ourselves from 

that team. 

• Remove suspicious_players from any previously successful teams. 

• If there are still anybody left in the team. We add that member to another list team. 

• If len(team) >=count-1 we break and return team 

select (…)  

• If We are a spy, we need to select a team with yourself and 2 resistance members at random. 

We don’t need to depend on NN to do this as we already know the spies.  

• If there are any team in self.teams and is self.game.team>3 we we set 

team=self.getOptimalTeam(count) 

• If there are any obviousSpies in the team, we remove them 

• If there are any obviousSpies in the sorted_players_by_trustworthines we remove them 

and append them at the end of the list 

• If we are resistance – I length of team > count-1 we select [self] and team [: count-1] 

• If we are resistance – I length of team == count-1 we select [self] and team [: count] 

• Else we select sorted_players_by_trustworthiness [: count] if [self] is in 

sorted_players_by_trustworthiness [: count] else select [self] + 

sorted_players_by_trustworthiness [: count - 1] 

After all these changes I was able to make the bot beat Bounder and Logicalton. Sometimes the bot 

gets beaten by Logicalton but the win percentage is very closer.  I decided to call the bot Fatality as 

from the classic game MortalKombat and added in some monologues from the game for the bot to 

say at different points. 



                
Fig 12: Fatality lost overall by 0.1%v    Fig 13: Fatality ties with Logicalton  Fig 13: Fatality beats Logicalton 

Analysis: 
Keeping tabs on teams that failed mission or passed mission helped a lot in improving the win rate 

of the bot. Eliminating players who have voted down in 5th try did not help much in improving the 

win rate. I realize that some of the bots like Trickerton just votes randomly and Simpleton always 

votes True vote. This might have been a factor that caused this. failed_missions_leadered did not 

make any change in accuracy of guessing who the spy is. This might be because Simpleton always 

return True on sabotage and Trickerton always return True on sabotage if turn > 1 and 

missions_passed_as_spy only helped in increasing the accuracy of finding out if Trickerton is a 

spy. This was surprising as Trickerton is derived from Simpleton and yet it does not affect the 

accuracy of simpleton.  

Using not just the probability of trustworthiness got from NN but a combination of it with number 

of failed missions’ player has been on helped vote down team with potential spies and improved the 

winning rate of the bot a lot.  

Figuring out optimal team from teams who had done successful missions and discarding teams or 

subset of team who had failed missions before helped improve the winning rate. Also not choosing 

to sabotage missions when you are spy and have another spy on team but with lower failed missions 

been on helped improve the winning rate of the bot. 

Overall conclusions: 

Only relying on the NN which guessed the probability of a player being a spy only got the bot 

winning to some extent. To go all the way, I had to combine the result of NN bot with other logics. 

This made sense as guessing who the spy is only helps when you are in resistance. When you are a 

spy you already know the spies and there is no need of using NN.  

To improve the accuracy in guessing the spy I have added 4 more input features - mission_passed, 

mission_passed_as_spy, won_as_res and won_as_spy. and made several improvements to the 

basic neural bot using nested decision trees to vote up or down a team, when to sabotage. How to 

select a team etc. 

To conclude using NN along with the basic logics of how a human would think when playing the 

resistance game and making nested decision trees out of it helped the bot improve and come at top 

of all the other bots. 

As there is always room for improvement maybe accuracy score on how prone a bot is to vote up a 

team or sabotage a game would help ease the game for the bot and may even help the bot win 



against experts.py. We could also add more input features or remove the ones that doesn’t impact 

the accuracy score much. 

References 

https://www.udemy.com/course/machinelearning/learn/lecture/6760380#overview 

https://medium.com/fintechexplained/neural-networks-bias-and-weights-10b53e6285da 

 

 

https://medium.com/fintechexplained/neural-networks-bias-and-weights-10b53e6285da

